skip to main content


Search for: All records

Creators/Authors contains: "Rao, Shilpa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In many multiple-input multiple-output (MIMO) communication applications, two-dimensional (2D) rectangular arrays are used and the angular field of interest is different in the azimuth and elevation angle domains. In this paper, we show how to exploit scenarios with users confined to narrow elevation angles by means of 2D rectangular arrays with low-resolution spatial Σ∆ sampling in only one (i.e., the vertical) dimension. We analyze the 2D directions-of-arrival (DoA) estimation performance of MUSIC for such arrays, and illustrate the resulting advantage of the Σ∆ approach over standard one-bit receivers. 
    more » « less
  2. Petersson, E. James (Ed.)
    Recent years have seen a growing number of examples of designed oligomeric molecules with artificial backbone connectivity that are capable of adopting complex folded tertiary structures analogous to those seen in natural proteins. A range of experimental techniques from structural biology and biophysics have been brought to bear in the study of these proteomimetic agents. Here, we discuss some considerations encountered in the characterization of high-resolution folded structure as well as folding thermodynamics of protein-like artificial backbones. We provide an overview of the use of X-ray crystallography and NMR spectroscopy in such systems and review example applications of these methods in the primary literature. Further, we provide detailed protocols for two experiments that have proved useful in our prior and ongoing efforts to compare folding thermodynamics between natural protein domains and heterogeneous-backbone counterparts. 
    more » « less
  3. null (Ed.)
    Spatial ΣΔ sampling has recently been proposed to improve the performance of massive MIMO systems with low-resolution quantization for cases where the users are confined to a certain angular sector, or the array is spatially oversampled. We derive a linear minimum mean squared error (LMMSE) channel estimator for the ΣΔ array based on an element-wise Bussgang decomposition that reformulates the nonlinear quantizer operation using an equivalent linear model plus quantization noise. Both the case of one- and two-bit quantization is considered. We then evaluate the achievable rate of the ΣΔ system assuming that a linear receiver based on the LMMSE channel estimate is used to decode the data. Our numerical results demonstrate that ΣΔ architecture is able to achieve superior channel estimates and sum spectral efficiency compared to conventional low-resolution quantized massive MIMO systems. 
    more » « less
  4. Abstract

    This work presents new results and summarizes literature results on the chiral induced spin selectivity (CISS) effect observed for amino acids, peptides, and DNA. To facilitate robust comparisons between measurements of different types and by different groups, we propose a convention for describing the spin‐dependent properties of chiral materials and apply it in the discussion. Different phenomena known to affect the sign and magnitude of the spin polarization are described and critically analyzed, including: the molecule's orientation, the molecule's dipole moment direction with respect to the electron propagation direction, the molecular length, the molecule/substrate interface, and the role of the molecule's secondary structure. Lastly, we identify open key questions about spin‐filtering by biomolecules at interfaces.

     
    more » « less
  5. We consider channel estimation for an uplink massive multiple input multiple output (MIMO) system where the base station (BS) uses a first-order spatial Sigma-Delta (Σ△) analog-to-digital converter (ADC) array. The Σ△ array consists of closely spaced sensors which oversample the received signal and provide a coarsely quantized (1-bit) output. We develop a linear minimum mean squared error (LMMSE) estimator based on the Bussgang decomposition that reformulates the nonlinear quantizer model using an equivalent linear model plus quantization noise. The performance of the proposed Σ△ LMMSE estimator is compared via simulation to channel estimation using standard 1-bit quantization and also infinite resolution ADCs. 
    more » « less
  6. Abstract

    The mimicry of protein tertiary folds by chains artificial in backbone chemical composition leads to proteomimetic analogues with potential utility as bioactive agents and as tools, to shed light on biomacromolecule behavior. Notable successes toward such molecules have been achieved; however, as protein structural diversity is vast, design principles must be continually honed as they are applied to new prototype folding patterns. One specific structure where a gap remains in understanding how to effectively generate modified backbone analogues is the metal‐binding β‐turn found in zinc finger domains. The literature precedent suggests several factors that may act in concert, including the artificial moiety used to modify the turn, the sequence in which it is applied, and modifications present elsewhere in the domain. Here, we report efforts to gain insights into these issues and leverage these insights to construct a zinc finger mimetic with backbone modifications throughout its constituent secondary structures. We first conduct a systematic comparison of four turn mimetics in a common host sequence, quantifying relative efficacy for use in a metal‐binding context. We go on to construct a proteomimetic zinc finger domain in which the helix, strands, and turn are simultaneously modified, resulting in a variant with 23% artificial residues, a tertiary fold indistinguishable from the prototype, and a folded stability comparable to the natural backbone on which the variant is based. Collectively, the results reported provide new insights into the effects of backbone modification on the structure and stability of metal‐binding domains and help inform the design of metalloprotein mimetics.

     
    more » « less